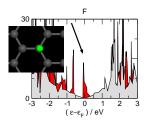
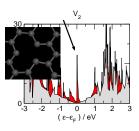
Spin-coupling around a carbon vacancy in graphene

Rocco Martinazzo

Dipartimento di Chimica Universita' degli Studi di Milano, Milan, Italy

GrapHEL Mykonos (Greece), Sept 27th - 30th 2012

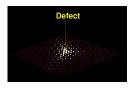

- Introduction
 - p_z vacancies
 - Jahn-Teller distorsion
- Results
 - DFT
 - CASPT2
- 3 Discussion


- Introduction
 - p_z vacancies
 - Jahn-Teller distorsion
- Results
 - DFT
 - CASPT2
- 3 Discussion

- Introduction
 - p_z vacancies
 - Jahn-Teller distorsion
- Results
 - DFT
 - CASPT2
- 3 Discussion

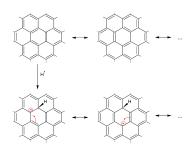
- Introduction
 - p_z vacancies
 - Jahn-Teller distorsion
- Results
 - DFT
 - CASPT2
- 3 Discussion

C-vacancies vs. adatoms



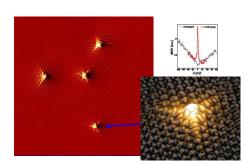
- Covalently bound species (e.g. H, F, OH, CH₃, etc.) and C-vacancies act as "p_z vacancies"
- Sublattice imbalance gives rise to midgap states

See e.g., T. O. Wehling, M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 80, 085428 (2008)

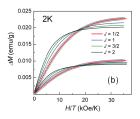

Midgap states

- lacktriangledown ψ localizes on majority sites
- \bullet $\psi \sim 1/r$
- \bullet ψ is singly occupied

V. M. Pereira et al., Phys. Rev. Lett. 96, 036801 (2006); Phys. Rev. B 77, 115109 (2008)

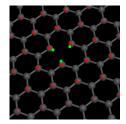

S. Casolo *et al.*, *J. Chem. Phys.* **130**, 054704 (2009); M. Bonfanti *et al.*, *ibid* **135**, 164701 (2012)

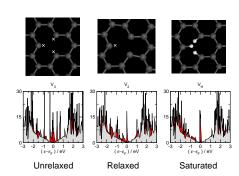
 $\Rightarrow p_z$ vacancies are spin-1/2 paramagnetic centers


Midgap states

..midgap state imaged

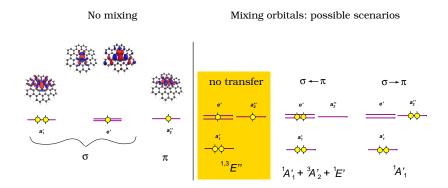
M.M. Ugeda et al., Phys. Rev. Lett. 104, 096804 (2010)


..spin-1 paramagnetism measured

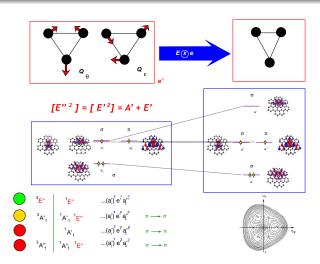


R.R. Nair et al., Nat. Phys. 8, 199 (2012)

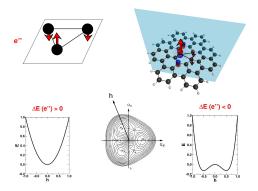
π and σ midgap states


- 1 π single-occupied state
- \bullet 3 σ dangling bonds (orbitals)

How do the unpaired electrons around the vacancy couple to each other?


π and σ midgap states: local D_{3h} symmetry

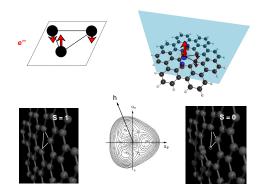
..the ground-state for S=0,1 is mostly $..(a_1')^2(e')^1(a_2'')^1\Rightarrow E'$



Standard $E \otimes e$ problem

$E\otimes (e'+e'')$ problem

Out-of-plane, *E''* vibrations do not lift degeneracy at first order..

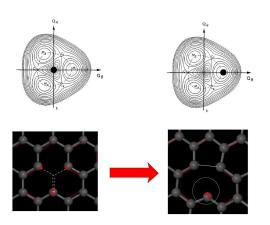


..but give corrections to second order, either positive or negative

$E \otimes (e' + e'')$ problem

..the sign being different for the two spin species

 \Rightarrow Three- vs. Six- fold degenerate minima, for S = 1, 0



- Introduction
 - p_z vacancies
 - Jahn-Teller distorsion
- Results
 - DFT
 - CASPT2
- Discussion

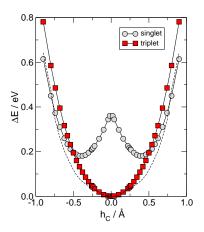
Technicalities

- Supercell approach: 6 × 6 × 1
- $\mathbf{6} \times \mathbf{6} \times \mathbf{1}$ k-point mesh
- PBE exchange-correlation functional
- PAW pseudopotential
- 500 eV cutoff
- Spin polarized
- Total magnetization constrained to $M_S = 0, 1$ manifold
 - ⇒ consistent with the 'molecular character' of the vacancy-related states

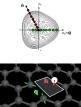
Magnetization relaxed

Full geometrical and spin relaxation

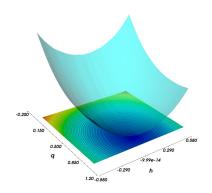
- Planar structure
- $d_{C-C} = 2.01 \text{ Å}$
- $M \sim 1.6 \mu_B$


Magnetization constrained

Partial geometrical relaxation, $M_S = 0, 1$ constrained



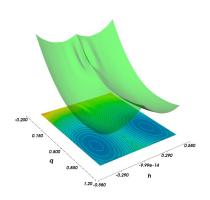
- triplet is stable, $\omega_{\perp} \sim 200 cm^{-1}$
- singlet is bistable, $\omega_{\perp} \sim 263 cm^{-1}$
- S = 1 is the ground-state up to $h \sim 0.5 \text{ Å}$



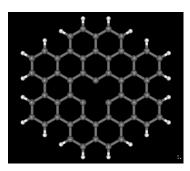
Magnetization constrained

Partial geometrical relaxation, $M_S = 1$

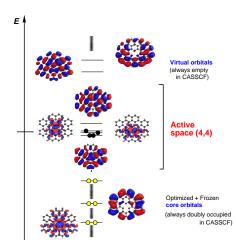
- triplet is stable
- singlet is bistable
- S = 1 is the ground-state up to $h \sim 0.5 \text{ Å}$


Magnetization constrained

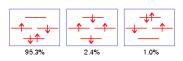
Partial geometrical relaxation, $M_S = 0$



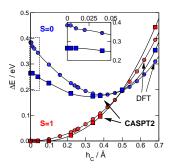
- triplet is stable
- singlet is bistable
- S = 1 is the ground-state up to $h \sim 0.5 \text{ Å}$

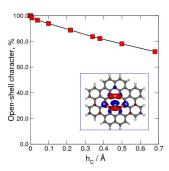


Technicalities


- Finite cluster (53 C atoms + 23 H atoms passivating the edges)
- Cluster shape selected in order to avoid 'edge effects'
- DFT optimized geometries
- Wavefunction-based pertubation theory: CASPT2

CASPT2 approach

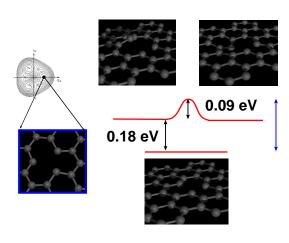

Step 1. multideterminant CASSCF wavefunction: full-CI in the Active Space *e.g.* for the singlet in planar configuration



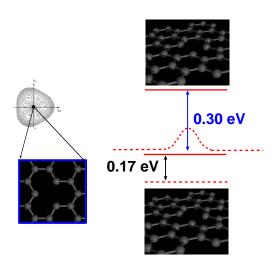
Step 2. build H_0 and compute 2^{nd} order perturbative correction

e.g. include up to double excitations to virtuals

CASPT2 results



- Magnetization constrained DFT results are reliable
- Accurate energies from CASPT2
- Singlet-state has a dominant open-shell character, $\Psi \propto (\sigma \pi + \pi \sigma)(\alpha \beta \beta \alpha)$


CASPT2 results

Exchange coupling constant (ground-state minimum):

 \sim 0.2 eV

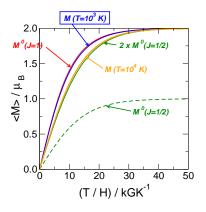
CASPT2 results

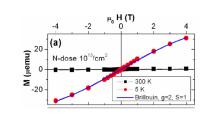
Exchange coupling constant (D_{3h}) :

 $\sim 0.3~\text{eV}$

- Introduction
 - p_z vacancies
 - Jahn-Teller distorsion
- Results
 - DFT
 - CASPT2
- 3 Discussion

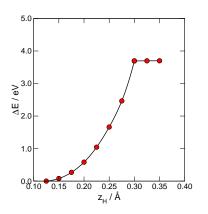
Singlet state hardly affects M

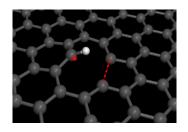

$$\begin{split} \Delta E_n &= \mu_B \, \langle n | L_z + g_0 S_z | n \rangle H + \sum_{n' \neq n} \frac{|\langle n | L_z + g_0 S_z | n' \rangle|^2}{E_n - E_{n'}} H^2 + \frac{\theta^2}{8 mc^2} \, \langle n | r_\perp^2 | n \rangle H^2 \\ M_n &= -\frac{\partial E_n}{\partial H} \qquad \qquad \langle M \rangle = \sum_n \frac{M_n e^{-\beta E_n}}{\sum_n e^{-\beta E_n}} = -\frac{\partial F}{\partial H} \end{split}$$


- Angular momentum is quenched (J = S), γ = g₀μ_B
- First-order correction to ΔE_n due to S = 0 level at energy Δ vanishes
- Only thermal populations are affected,

$$\langle \mathbf{M} \rangle = \frac{\sinh(\beta \gamma \mathbf{H}(J + \frac{1}{2}))}{\sinh(\frac{\beta \gamma \mathbf{H}}{2})e^{-\beta \Delta} + \sinh(\beta \gamma \mathbf{H}(J + \frac{1}{2}))} \langle \mathbf{M}_{J}^{0} \rangle \quad \langle \mathbf{M}_{J}^{0} \rangle = \gamma J B_{J}(\beta \gamma J H)$$

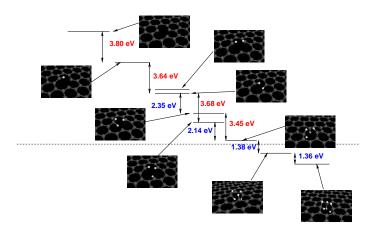
Singlet state hardly affects M




spin-1 paramagnetism in N⁺ irradiated FLG

A. Ney et al., App. Phys. Lett. 99, 102504 (2011)

C-vacancy reactivity


H adsorption on a bare C-vacancy is energetically and kinetically possible

..a simple (possible) spin-1/2 paramagnetic species

Hydrogenation

Mono-, Three- and Penta- hydrogenated vacancies are all spin-1/2 species

Summary

- A C-vacancy is more.. than a " p_z vacancy"
- S = 0, 1 manifolds have both open shell-character σ^1, π^1
- The singlet is a bistable system potentially useful as solid-state qubit
- The bare vacancy is a spin-one paramagnetic species
- Spin-half paramagnetism can be accommodated by chemical bonding to e.g. H atoms

Acknowledgements

Marina Casartelli

Gian Franco Tantardin

Simone Casolo

Thank you for your attention!

Dept. of Chemistry, Università degli Studi di Milano, Milano, Italy

Chemical Dynamics Theory Group, http://users.unimi.it/cdtq

e-mail: rocco.martinazzo@unimi.it